3.2.48 \(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx\) [148]

3.2.48.1 Optimal result
3.2.48.2 Mathematica [C] (warning: unable to verify)
3.2.48.3 Rubi [A] (verified)
3.2.48.4 Maple [A] (verified)
3.2.48.5 Fricas [C] (verification not implemented)
3.2.48.6 Sympy [F]
3.2.48.7 Maxima [F]
3.2.48.8 Giac [F]
3.2.48.9 Mupad [F(-1)]

3.2.48.1 Optimal result

Integrand size = 33, antiderivative size = 83 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {(A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \]

output
(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d* 
x+1/2*c),2^(1/2))/a/d+(A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c 
)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-B)*sin(d*x+c)*cos(d*x+c)^(1 
/2)/d/(a+a*cos(d*x+c))
 
3.2.48.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.27 (sec) , antiderivative size = 858, normalized size of antiderivative = 10.34 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (-\frac {2 (A-B) \csc (c)}{d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )\right )}{d}\right )}{a+a \cos (c+d x)}-\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))}+\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))} \]

input
Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x 
]
 
output
(Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*((-2*(A - B)*Csc[c])/d - (2*Sec[c 
/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/d))/(a + a*Cos[c 
 + d*x]) - (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, 
{5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqr 
t[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x 
- ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + 
 d*x])*Sqrt[1 + Cot[c]^2]) - (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hypergeometr 
icPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - A 
rcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^ 
2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]]) 
/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (A*Cos[c/2 + (d*x)/2]^2*Csc 
[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[T 
an[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Ta 
n[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[T 
an[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c 
]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqr 
t[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c 
]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c + d*x])) + (B*Cos[c/2 + (d*x)/ 
2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + 
ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x ...
 
3.2.48.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int \frac {a (A+B)+a (A-B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (A+B)+a (A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (A+B)+a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {a (A+B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a (A-B) \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

input
Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]
 
output
((2*a*(A - B)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(A + B)*EllipticF[(c + d 
*x)/2, 2])/d)/(2*a^2) - ((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + 
a*Cos[c + d*x]))
 

3.2.48.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
3.2.48.4 Maple [A] (verified)

Time = 3.11 (sec) , antiderivative size = 243, normalized size of antiderivative = 2.93

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (-2 B +2 A \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(243\)

input
int((A+B*cos(d*x+c))/(a+cos(d*x+c)*a)/cos(d*x+c)^(1/2),x,method=_RETURNVER 
BOSE)
 
output
((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2* 
c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(A*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+B* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/ 
2)))+(-2*B+2*A)*sin(1/2*d*x+1/2*c)^4+(-A+B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/ 
2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2* 
d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.48.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 241, normalized size of antiderivative = 2.90 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=-\frac {2 \, {\left (A - B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm= 
"fricas")
 
output
-1/2*(2*(A - B)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-I*A - I*B)*co 
s(d*x + c) + sqrt(2)*(-I*A - I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) - (sqrt(2)*(I*A + I*B)*cos(d*x + c) + sqrt(2)*(I*A + I* 
B))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*( 
I*A - I*B)*cos(d*x + c) + sqrt(2)*(I*A - I*B))*weierstrassZeta(-4, 0, weie 
rstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*(-I*A + 
I*B)*cos(d*x + c) + sqrt(2)*(-I*A + I*B))*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c) + a*d 
)
 
3.2.48.6 Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\int \frac {A}{\cos ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a} \]

input
integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)**(1/2),x)
 
output
(Integral(A/(cos(c + d*x)**(3/2) + sqrt(cos(c + d*x))), x) + Integral(B*co 
s(c + d*x)/(cos(c + d*x)**(3/2) + sqrt(cos(c + d*x))), x))/a
 
3.2.48.7 Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm= 
"maxima")
 
output
integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), 
x)
 
3.2.48.8 Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm= 
"giac")
 
output
integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), 
x)
 
3.2.48.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

input
int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))),x)
 
output
int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))), x)